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The use in additive number theory of numbers
without large prime factors

By R.C. VAUGHAN

Department of Mathematics, Huxley Building, 180 Queen’s Gate, Imperial College of
Science, Technology and Medicine, London SW7 2BZ, U K.

In the past few years considerable progress has been made with regard to the known
upper bounds for G(k) in Waring’s problem, that is, the smallest s such that every
sufficiently large natural number is the sum of at most s kth powers of natural
numbers. This has come about through the development of techniques using
properties of numbers having only relatively small prime factors. In this article an
account of these developments is given, and they are illustrated initially in a
historical perspective through the special case of cubes. In particular the connection
with the classical work of Davenport on smaller values of % is demonstrated. It is
apparent that the fundamental ideas and the underlying mean value theorems and
estimates for exponential sums have numerous applications and a brief account is
given of some of them.

1. Introduction

One of the questions of central interest in additive number theory is that of
constructing in an efficient manner sets of numbers each element of which is the sum
of s kth powers of natural numbers. A closely related question is that of obtaining
bounds for the number IV of solutions of the equation

bbb =yf+ . +yf, with z,y,e9, o <NnnI[LP) (1.1)

The ideal bound, usually unobtainable in the current state of knowledge except in
special cases, is

N < (card & ... card &+ (card o ... card o) P~%) Pe.

In one of their seminal papers on ‘Some problems of “partitio numerorum’’
concerned with Waring’s problem Hardy & Littlewood (1925) make explicit use of
the familiar observation that when £ > 1 the kth powers are ‘well spaced’. Thereby
they are able to construct quite large subsets of Z n [1,X] each element of which is
the sum of s kth powers. In the simplest possible form of this construction they take
P = (X/s)"*, oy =1—1/k, P;=270"D&"1 P¥ and consider those numbers of the
form a4 ...+ ¥ with the «; lying in the ‘diminishing ranges’

o = {a;:3F < ; < B} (1.2)

When X is large no number can be represented more than once in this way, for
otherwise we would have (1.1) with the y, €24 and x; # y, for some ¢. Then, if / is the

smallest such 7, we have |x¥ —y¥| > k(P,/2)¥ ' whereas |zf,, +... +aF —yF  — ... —y¥| <
Pt +O(PE,) < k(P,/2)*!, which is absurd. Thus there are > X* with A=
Phil. Trans. R. Soc. Lond. A (1993) 345, 363-376 © 1993 The Royal Society
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364 R. C. Vaughan

1 —(1—1/k)*, numbers of the form ¥+ ... +2¥ not exceeding X. There are a series of
important refinements to the diminishing ranges construction, due principally to
Davenport (1938, 1939a—c, 1942a, b, 1950) and Davenport & Erdos (1939) (see
Davenport (1977) and ch. 5 and 6 of Vaughan (1981)), and it also plays a major role
in much of Vinogradov’s work (1984) on Waring’s problem. More generally, suppose
that (X/s)Vk > P, > P, > ... > P, and define R(n) to be the number of representations
of n in the form 2¥+ ...+ 2% with

3P <x; <P, (1.3)
If one can show that

YR(n)?<PP,.. PX, (1.4)
then it follows by a simple application of Cauchy’s inequality that

Y 1>PP,..PX™

n,R(n)#0
Thus the set 4, ; of sums of s kth powers in [1,X] N Z satisfies
card %), ;> P, P,... P, X" (1.5)

For example, if one takes
P=X/s)'*, =1-1/k, P, =P¢j_l(j =1,...,s—1), P=P_,, (1.6)

then one can establish (1.4) as follows. The left-hand side is the number of solutions
of (1.1) with (1.3) and (1.6) holding for each x; and for each x; replaced by y;. Given
any such set of x; it is easily seen by a simple refinement of the argument above that
there are at most O(1) choices for y,. Then, given any set of z; and any y, and
provided s—1 > 2 there are at most O(1) choices for y,. By repeating this argument
we see that given a set of x; there are at most O(1) choices for y,,...,y, ,. Finally,
given any set of x; and any y,, ..., y, ,, the equation (1.3) reduces to y* , +y* = u for
some integer u with 4 <€ X and so the number of choices for y,_,,y, is O(X¢). This
establishes (1.4) and so, by (1.5), we have

card B, > X', A= 1—(1—2/k) (1—1/k)2) (X > Xy(e,k,s).  (1.7)

2. Three cubes: an illustrative example
When & = 3 and s = 3 (1.7) shows that

card B, , > Xic (X > X,(e)). (2.1)
Now, as in Davenport (1939a), we suppose that
P=P=(@X)}, Q=PF=P,=P/ (2:2)

and for the time being leave i at our disposal subject only to the condition 2 <
Y < 1. Our aim is to establish (1.4) with a larger value of 3 than 2.

We define R(n) as above and once more interpret 2, R(n)? as the number of
solutions to (1.1) subject to (1.2). The equation (1.1) can be rewritten in the form

yi—ai = dy+ai -y — v (2.3)
The number of solutions with x;, =y, can be bounded as before and is O(P@?X°),
Phil. Trans. R. Soc. Lond. A (1993)
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Additive number theory 365

which is acceptable. Hence, by symmetry, it suffices to bound the number S of
solutions to (2.3) in which y, > ;. In this case, let A = y, —x,. Then (2.3) becomes

h(3x® +3xh+h?) = a3+ a3 —y3— 3, (2.4)

where, for brevity, we have written x for y,. Moreover
0<h<H, (2.5)
where H =3p¥2 (2.6)

Rather than following directly Davenport’s elementary argument, we introduce
exponential sums as they lead naturally to the more modern developments. In the
first instance our argument will mirror Davenport’s. Let

flash)y= X e(ah(3x2+3xh+h?)), (2.7)
iP<az<P
g(a) = e(o®), (2.8)
3Q<z<Q

where e(ff) = exp(27i). Thus, by the orthogonality of the additive characters on R/Z,

we have
1

S< X flosh)lg(e)l* de

0 1<h<H
and so, by Schwarz’s inequality we have

1 1
S < ( Y If(a;h)lzlg(d)l“dd) (HJ lg(co)l* dOC)o (2.9)
01<h<H 0
The first integral here is the number of solutions of the equation
3h(y? — %)+ 3h3(y, — ;) = @3 + a5 —y3—y3. The number of solutions of this with y, =
x, is O(HPQ**) and the number of solutions with y, # x, is O(Q***). Moreover the
second integral is the number of solutions of the equation x3+ 3 = x>+ 232, and this
has O(Q**¢) solutions. We combine these estimates and obtain S < PQ2 (HP :+
H:QP"). Thus (1.4) will follow provided that H = O(P%) and H: Q = (P). Hence, by (2.2)
and (2.6), ¢ =% is an acceptable value of 3 and then we have

card B, , > X8 (X > X,(e)). (2.10)

The use of exponential sums here suggests at once a possible improvement in the
argument. The expression X, _, < |f(oe; h)|? occurring in (2.9) can be treated in a
standard way, for example as in Vaughan (1985) or Lemma 3.1 of Vaughan (1989«).
Thus, if @ and ¢ satisfy (a,q) =1, ¢ < X and |ga—a| < 1/X where P < X € HP, then

}1P%H
py o h)|? €« ——————+ HPe,
1<h<H|f( ) q+Q%|lga—al
Now for most « in the unit interval there will be ¢ < X and a with (a, ¢) = 1 such that
|ge—a| < 1/X and either ¢ > P or @®|ge—al > P. Let the set of such « in (0, 1] be
denoted by m. Then for a on these ‘minor arcs’ m we have 2, _, . |f(a; #)]* < HP',
and so

2 |fles k)P lg()l da < HPY Q.

ml<h<H

Phil. Trans. R. Soc. Lond. A (1993)
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For the range of ¢ in which we shall be interested it transpires that the
contribution to the integral from the ‘major arcs’ MM = (0,1]\m is smaller (see
Vaughan 1985). Thus we now have S < HP#*@Q? and (1.4) will follow provided only
that H < P% thus ¢ = 2 is an acceptable value of i and then we have

card B, , > X (X > X,(e)). (2.11)

The above arguments can be imitated by a so-called ‘p-adic’ method which has its
genesis in Davenport (1942a) and this played an important role in suggesting the
modern developments. The p-adic method runs along the following lines.

Let

0=1—y, P=(X/20)3 @Q=P/, M=P/Q=P°, H=PM3 (2.12)
We now define RB(n,p) to be the number of representations of n in the form
P +pYyityd) with (x,p)=Lae <Py <@ (2.13)

and take R(n) = X, R(n,p) where the sum is over the primes p with M < p < 2M,
p =2 (mod 3). If we can show that

Y R(n)? < M?PQ* X, (2.14)
n
then, as in §1, we have
Y 1> PEPX ™ (2.15)
n,R(n)#0

By Cauchy’s inequality, we have X, R(n)* < M2, X, R(n,p)?, and here the double
sum on the right is the number of solutions of

@ —a® = Pyl -y —ve) (2.16)

with the variables as before. The number of solutions with 2" = x is O(PQ?*MX*). Thus

it remains to consider the solutions with ' > x. We have p = 2 (mod 3), (x2’,p) =

1 and 2® = 2”® (mod p®). Thus = 2’ (mod p®) and so the equation (2.16) is equivalent

to
3ha®+ 3h%xp® + h3p® = 3+ — vy — vyl (2.17)

where we have written A for (' —x)p~2. Clearly h satisfies || < PM~2 = H where H
is as before, and the number of solutions with «” > x is bounded by

1
f ) E flesh,p)lg(e)de, (2.18)
0 M<p<2M 1<h<H
where g(a) is as above and
flesh,p) = 2 e(ah(3x%+ 3xhp® + h2p%)). (2.19)
r<P

Much as above it can be shown that for « on an appropriate set of minor arcs m
we have

) 2 |flosh, p)* < HMP'',
M<p<2M 1<h<H
and so the contribution to the integral from these a is < HMP!@Q?X¢. It can further
be shown that, again under appropriate conditions, the 9 make a smaller

Phil. Trans. R. Soc. Lond. A (1993)
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contribution to the integral. Thus we find that X, R(n)? < M*(P+HP*) Q*X¢, and
once more the optimal choice for ¢ is 2 and so by (2.15) we have another proof of
(2.10). However, this argument allows of two further important improvements.

First of all, the left-hand side of (2.17) is quadratic in «, and on completing the
square and replacing x by z = 2z +hp® we see that it becomes

3ha® + hipS = dyP + 42 — 4o — 4. (2.20)

More precisely, if we take A = (¢’ —x)p~® and z = 2"+« in (2.16) and suppose that
a2’ > x, then we obtain (2.20) with

h<H, z<2P, M<p<2M, y;<Q (2.21)
and the other variables as before. The number of solutions of (2.20) with (2.21) is

j F (@) g das,

where F)= X F(a;h)G(ash), (2.22)
1<h<H
F(a;h) = X e(a3hz?), (2.23)
z<2P
Glash)= 3 e(ah?p®). (2.24)
M<p<eM

Again, on the minor arcs we have 2, . ; |F(a; h)|* < HPX*. Moreover, the separation
of the ‘x’ part from the ‘p’ part means that there is the possibility of a further saving
through a non-trivial estimate for 2, _ ; |G(x; 2)|%. In fact, it can be shown (Vaughan
1986) under suitable conditions that this last expression is O(HMX¢) on the m, and
S0

F (o) < HPM): Xe. (2.25)
Thus one obtains X, R(n)? < M*(P+HP* M%) Q2 X¢, and the optimal choice of i is &,
Therefore, one obtains

card B, , > X#° (X > X(e)). (2.26)

Differences of the kind ((xz+ hp®)® —a®) p~3 are often referred to as efficient differences.
The second improvement which can be introduced here stems from the observation

that in the ‘p-adic’ method each of the cubes in a representation ranges out to P, i.e.

it restores a measure of homogeneity. This can be exploited in the following way.

For a suitable large parameter L let 2 and 2 denote the set of numbers of the form
Py ... pr, and p, ... py, respectively, with PAA~0"" < 5 < 2P0=0"" and p. = 2 (mod 3)
and then define R(n; %) to be the number of representations of n in the form
a2+ a3+ x} with 2;€ . Thus we have the possibility of comparing X, R(n; 2)* with
2, R(n; 2)? and thereby setting up an iterative process of a new kind.

Somehow, we need to introduce the condition (x,p) = 1 which is made use of in
the previous argument, i.e. we need to show that the dominant contribution comes
from the ‘non-singular solutions’ to the congruence which arises. In the processes we
describe below this step is usually dealt with by a suitable ‘fundamental lemma’. The
sum 2, R(n; )% is the number of solutions of

B+adtad =aP+alt+a? (2.27)

Phil. Trans. R. Soc. Lond. A (1993)
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368 R. C. Vaughan
with each of the variables in 2. Let
flo)y = X elax®), g(a) = X e(ax?). (2.28)
xeP xeld

Then the number of solutions in which at least one pair of the variables have a
common factor in (M, 2M] has order of magnitude at most

% If %)%l de,
M<p<2M

and by Hélder’s inequality this does not exceed

1

M(ZR(n; @)2)5 (ZR(n; 9)2)“.

Thus if the solutions of this kind account for at least one half of all solutions, then
we can conclude that

SRn;?): <MY R(n;2)> (2.29)

Suppose on the contrary that less than one half of all solutions to (2.27) are of this
kind. Then

1
ZR(n;2)? KTEIE | |f(o; 12205 2)* g(0p?) 9(0p3) (p3) g(oepi)| d,
n Dy Py P3Py v O
where each prime p; satisfies p; = 2 (mod 3) and M < p; < 2M, and
flaym)= X e(ax?). (2.30)
(x,xﬁg—-ﬂ

By Holder’s inequality the above integral does not exceed

1
EXTT | | floes oy peps 2a)? lg(ap?)|* de.

Dy Py P3Py v 0

This in turn does not exceed M? times the number of solutions of (2.16) with x < P,
¥ <P,M<p<2M,p=2 (mod 3), y;€2. The number of solutions with 2’ = x is
O(PM@*X¢). The remaining solutions are dealt with initially as in our original
description of the ‘p-adic’ method above. Thus we obtain

ZR(n P)? <PM4Q2X€+M3J lg(e0)|* do. (2.31)

By Holder’s inequality, the integral here is bounded by

( f |.97(oc)|3doc)§ (f |g<a)|6da)§, (2.32)

Now [3|Z (a))?da is the number of solutions of the equatlon 3ha®+ hPp®
3h/x"*+ h'*p’® and this is readily seen to be O(HPMX¢). On the minor arcs m we have

Phil. Trans. R. Soc. Lond. A (1993)
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(2.25) and it can be shown (Vaughan 1989a) that for an appropriate choice of
parameters the contribution from the major arcs 9 is no larger. Thus

1
J |F () doe < HA(PM)za™. (2.33)
0
The second integral in (2.32) is nothing other than X, R(n; 2)®. Thus
ZR(n;2)* < X€<PM4 Q>+ H PiM: (}:R(n;,@)z)i)
n n

Now we wish to find the smallest real number A > 3 such that ¥, R(n;2)* < @Q\*
implies

S R(n; P): < PAe, (2.34)

If (2.29) holds, then we may expect to be able to take A = 3. On the other hand, if
(2.34) holds, then we expect that

PN < XY(PM* Q2+ HY(PM): Q2V/3). (2.35)
In this case, when i, or equivalently 0, is chosen optimally, we have
A=3+4+260=2%1-30)+11+70)+2(1—0)(3+26).
Thus 8 =41, =1 give A =1 and so
card B, , > Xtre (X > X,(e)). (2.36)

An appropriate inductive argument to establish this is constructed along these lines
in the proof of Theorem 1.3 of Vaughan (1989a).

3. The introduction of numbers without large prime factors

Although the case of three cubes discussed above illustrates many of the salient
features of the modern theory, in one important respect it obscures an issue. It is
clear that the techniques described above are essentially iterative, i.e. generally we
bound the number of solutions of (1.2) in terms of the number of solutions of (1.2)
with the variables lying in a smaller set and with s replaced by various values of ¢ not
exceeding s. When s = 3 the values of ¢ which arise are t = 3 and ¢ = 2. Bounding the
number of solutions when ¢ = 2 is essentially trivial.

When s > 3, the case in which ¢ = s—1 is no longer trivial, and we may wish to
apply our iterative procedure to the new equation. But then the optimal value of 6
may well be different from the optimal value which arises in the case { = s. Thus we
need to find a substitute for the set 2 in which most elements have a plentiful supply
of suitable divisors.

Let «/(P,R) denote the set of natural numbers not exceeding P which have no
prime factor exceeding R. This set has the remarkable property that, given any M
with M < P, then any a€ .o (P, R) with M < a has a divisor m with M < m < ME. In
practice we usually take R = P7 where 7 is a small but fixed positive number.

The set o/ (P,R) has great flexibility in this regard. However, we now have to
concern ourselves with two new problems. Firstly, there is the problem of dealing

Phil. Trans. R. Soc. Lond. A (1993)
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with the ‘singular solutions’ of the congruence which arises. Secondly, there is the
analogue of the condition p =2 (mod 3) which occurs in the ‘p-adic’ method
described above.

The first problem is more central and usually is overcome by a ‘fundamental
lemma’. We describe below the various fundamental lemmas which have been
devised to deal with this situation. The second of the problems is something of a red
herring, and is easily overcome by a technical device, introduced in Vaughan (1986),
which is simply described.

We have to bound the number N of solutions of an equation of the form

2k +mFu = 2% +mFu’ (3.1)

where xeo/, ¥’ed with o < [1,P] N NM <m <2M, (xx',m)=1,uch, W'eA
with 4 a finite subset of NV, and each element u of 4 is counted with weight o (u), say.
Thus

N=%Y Y p) J Sflasm,y) f(—a;m,y’) [S(am®)|* da,
) 0

m y (mod mk) Y’ (mod mk

(y,m)=1 y* =y*modmF)

where fla;m,y) = > e(ax®), (3.2)

zesd 4
=y (modm")

S(a) = X o(u)e(au). (3.3)
ue#
Hence, by Cauchy’s inequality,
1
NEE S g | sy S da
m y(mod gl’“) 0

where p(y) is the number of solutions of the congruence z* = ¢* (mod m*). Since
(y,m) =1 we have p(y) < m¢. Thus

N <N’ M, (3.4)

where N’ is the number of solutions of (3.1) with x = #’ (mod m*) in addition to the
previous conditions. Thus N’ is the precise analogue of the situation which occurred
in the p-adic method described above.

4. Fundamental lemmas
Let S,(P,R) denote the number of solutions of
ok =y 4yt (4.1)
with x,ed(P,R), y,e(P,R), (4.2)

and for a given real number 6 with 0 < 6 < 1 let 7(P, R, 0) denote the number of
solutions of
o FmEl+ . 2k ) =y mE eyt k), (4.3)
with
x,y <P, x=y(@modmk), P’<m<min(P,P’R), x;,y,e/(P'%R). (4.4)
Then the following lemma is established in Vaughan (1989¢a, Lemma 2.1).
Phil. Trans. R. Soc. Lond. A (1993)
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Lemma 1. Let 0 = 0(s, k) satisfy 0 < 60 < 1 and suppose that 1 < D < P. Then

S,(P,R) <( » SS(P/d,R)”S)s+SS(D1""P0,R)

d>D

S
+P€< Y (P/d)YR)*3/s ﬂ(P/d,R,B)”s) .
a<D
When s>k and R is not too small by comparison with P we expect that
S,(P,R) ~ P° and T(P,R,0) = P" with o > s, 7 > s. Thus for a suitable choice of D
the first two terms on the right of the above inequality can be expected to be small
compared with the left-hand side and the third term will be dominated by the term
in the sum with d = 1. Thus in principle the lemma says that either S (P, R) < P*or
S,(P,R) < (P°R)*3T(P,R,6), and so is eminently suitable for solving the first
problem described above.
Let
M=P, Q=P/M. (4.5)

Then T(P,R,0) < PMRS,_(Q,R)+2U/(P,R,M),
where U,(P, R, M) is the number of solutions of (4.3) with (4.4) and « > y. Moreover

(P RM) < f 'F@) g da,

0

where Fa)= X e(a((x+hmk)* —z*)m™)

h,m,x

with h < H=PM* M <m<MR,x <P, and

glay= X e(az”).
zed(Q, R)
We may proceed now by making various estimates for the exponential sum ¥ and
combine these with various forms of Holder’s inequality to set up an iterative
procedure between S (P,R) and S,(@,R) with various choices of ¢ and ¢. This was
done in Vaughan (1989a, b) and Vaughan & Wooley (1991).

The methods described so far use one efficient difference, but then to deal with the
exponential sum F advert to ordinary subsequent differences. The question naturally
arises as to whether it is possible to make use of repeated efficient differences. The
fundamental lemma described above is not well suited to this end, at least in the form
given, as apparently it makes special use of the properties of kth powers.

Wooley (1992a) has shown how by use of a refined fundamental lemma repeated
efficient differences may be introduced. Let Y(z,c¢) denote a polynomial in the
variables z,¢,, ..., ¢, with integer coefficients and having degree at least one in z, and
let S,(P,Q,R) denote the number of solutions of

Yz, e)+ak+...+af = P&, ) +yf+... +yF (4.6)

with z;€ #(Q,R), y,e 4 (Q,R), 1 <z<P, 1<z <P, (;<¢<(, ;< ¢; < C;. In
particular, when ¥ =2* t = 0, Q = P, we have S,(P,Q,R) = S,,,(P,R). Further, let
T(P,Q,R;0) denote the number of solutions of

Y(z, c)+wk(ul +...+uk) = P, c) +wh(wh + ... +0F) 4.7
Phil. Trans. R. Soc. Lond. A (1993)
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372 R. C. Vaughan

with z,7/,¢ as above and P’ < w < min(Q,P’R), u;e 4 (QP ™’ R),v;e 4 (QP’,R),
z =2 (mod w*). Finally take N,(P, @, R) denote the number of solutions of (4.6) with

E’j—g—l(z c)= o
oz R4

Lemma 2. Suppose that 6 = 0(s, k) satisfies 1 < P? < Q. Then

(z',c)=0.

S,(P,Q,R) <P€(ﬁ )(PﬁR)zs LT(P,Q,R;0)+QP*<S, (P,Q,R)+S,(P,P’,R)

+N,(P,Q,R).

5. Repeated efficient differences

The introduction of repeated efficient differences leads to more complex iterative
processes than have been used hitherto.
For each se Nwe take ¢; = ¢, ; (¢ = 1,..., k) to be real numbers, with 0 < ¢, < 1/k,
to be chosen later. We then take
P=2P, M,=P% H,=PM"* @ =PFM. .. M)" (1<j<k).

For the sake of concision, we shall also adopt the convention of writing
- J - J
H;=11H; and M;=1T1IMR.
=1 i=1
We define the modified forward difference operator, 4¥, by
AY(f@); h;m) = m™*(f(x+hm") —f(x))
and define A4¥ recursively by

A (@) P, Py s mmy) = AFAF@) s Dy, omg) sy smy ).
We also adopt the convention that AF(f(z);h;m) = f(z).
For0<j<klet
Y, =Yi(z;hy,....h;smy,...,m;

> ]

) = AX(f(z);2hy, ..., 2h;;my, ... ,my),

where f(z) = (z—h, mF —. .—kjmf)’“.
Write
fl= 3 eah).
2esl(Q;, R)
Also, write Fa)= X e(a¥(z;h;m)),
z,h,m

where the summation is over z, A, m with
1<z<P, M;<m<M;R, mesd(P,R), 1<h<27'H (1<i<j). (5.1)
Suppose that the real numbers A, have the property that
S,(P,R) < PAste, (5.2)
Such numbers certainly exist, since we may trivially take A, = 2s.

Phil. Trans. R. Soc. Lond. A (1993)
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We list below some useful lemmata taken from Vaughan & Wooley (1993a). They
are fairly immediate consequences of Wooley’s fundamental lemma and Schwarz’s
inequality.

Lemma 3. We have

1 1
J [Fo(e)? folo) | dow < P31 (PMI QQS”‘FJ £, () f ()] da)- (5.3)
0 0
Lemma 4. Whenever 0 <t <sand 1 <j < k—1, we have
[ @ 0010 < P@A AT 35 54)
0
where
1
Ty =T (Ps4;9) = PH, My+1 ?ﬁ“*‘f |ﬁ}+1(“)fj+1(0‘)4s_2t|d0‘- (5.5)
0

There are two other ways of estimating the integral on the left-hand side of
equation (5.4).
(H) We may apply Holder’s inequality in the form

1
f 1B (@) ()] doc < LU TP,
0
where

- f P de (m=1,2) U, = f Ve da (u=v,w),

in which » and w are non-negative integers and a,f,y,0 are non-negative real
numbers with

atpty+d=1, 2a+4f=1, vytwd=s.

The second and fourth power mean values of F; may be estimated in terms of the
number of solutions of certain diophantine equatlons Also, we have U, < @}»** and
U, < Q" w*¢, There is, of course, the possibility of using higher moments of Fi(o).
However estimates for such moments are too weak to be of value in the current state
of knowledge.

(M) We may apply the Hardy—Littlewood method along the lines of §3 of Vaughan
(1989a).

By considering the underlying diophantine equations, we have

1
8, (P, R) <f (Fy(o0)? fofa0)®] s,
0

and hence we may use a sequence X of connected inequalities (in the obvious sense)
to bound S (@, R) in terms of S,(Q",R) (t =1,2,...). Such a sequence is called an
iterative procedure. A finite subsequence of a sequence (2,)® of iterative procedures
is called an dterative scheme.

We now outline the main strategy. Suppose that we have taken j+ 1 differences,
and so are left to bound an expression of the form 7}, ,, as defined by equation (5.5).
By applying a process of the type (H) or (M), we may obtain a bound of the form

T,y < PA T, Qi+ V(P; 2 9), (5.6)
Phil. Trans. R. Soc. Lond. A (1993)
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374 R. C. Vaughan

for some expression V(P; 4; ¢) depending explicitly only on P, 4, and ¢ = (¢, ..., ¢;,4).
We may then obtain a bound for 7}, by minimizing the expression on the
right-hand side of (5.6). In our applications, a close approximations to the minimum
occurs when a choice of ¢ is taken so that Pﬁjﬂj 1 @t & V(P; 4;9), where we use
the symbol to mean that we have ignored constants and powers of R and P*.

This relation determines some equation,

4;41(4;0) =0, (5.7)

connecting the ¢; (1 <4 < j+1) in an obvious manner. With the optimal choice of ¢
given by (5.7), the bound (5.4) now becomes

1
fmmmmww<ﬁwmmmﬁwwwvﬁ
0

This bound may now be used to bound an expression of the form 7} via Lemma 4,
and we obtain an inequality of the form

Ty < PY(PH,;_, B, Q)+ (PHE IR M7 Q) Qri)b).

Optimizing the right-hand side gives rise to a further equation connecting the @, say
A;(4;9) = 0. We may continue this process, next bounding an expression of the form

prmmemm

in like manner, and so on.

In this way, for each s we obtain j+1 equations A (1;9) =0 (1 <i<j+1),in
J+1 variables ¢; (1 <4 < j+1). These permit us to solve for ¢ in terms of 4, and,
provided that a solution is found with 0 < ¢, < 1/k for each 1 <1 <j+1, it follows
that

1
Jmm%MNM<wama
0

with ¢, given by the solution ¢ of the simultaneous equations A)(1;¢) = 0. It
therefore follows that )
Sy (P, R) K Plswrte)

with A;,; = A(1—¢,)+14+2s¢,.

By adopting this entire process for s = 1,2,..., we may define a new sequence of
exponents, 4, by taking Ay = min{A;,A,} (s =1,2,...). Thus, we have the sequence
of bounds

S,(P,R) < PN+,

In principle we may obtain the optimal 4 by solving the equations 4 = A*. Indeed,
for smaller values of s, and in particular when the A, with ¢ > s do not occur explicitly
in the formulae involving A, this may be the easiest way to proceed. In practice,
however, we proceed to calculate values for 4 as follows. Starting from a known
sequence 4 we calculate 4" as described above. Then we use the A} in place of the A,
in the equations A”(4;¢) = 0. Thus, by applying this iterative scheme repeatedly,
we obtain a sequence of sequences (A{”) with A{*D < AP for each r and s. Since
diagonal solutions provide us with the lower bound A{? > s, the sequence must
converge to some limit (A¥). Moreover, A* has the property that

S,(P,R) < PN+, (5.8)
Phil. Trans. R. Soc. Lond. A (1993)
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Additive number theory 375

The method outlined above involves an iteration process in which each AZ*V (1 <
s <o0) depends on each A (1 < s <00). Sometimes economies may be made in this
procedure. Thus, for example, for s exceeding some s, we have A¥ = 2s—k. Further,
for certain values of s the iterative procedure for A, may be independent of A, for
t > s. In this latter case it may then be possible to obtain A¥ independently of A¥
(t > s). The detailed analyses and calculations are extremely complicated. They and
various applications of the mean values (5.8) are given in Harman (this volume),
Vaughan & Wooley (this volume, 1993 a, b, ¢) and Wooley (1992a, 1993 a). In Waring’s
problem, where as usual G(k) is the smallest s such that every sufficiently large
natural number % is the sum of at most s non-negative kth powers, they lead to the
upper bounds G(k) < klog k+k log log k+o(k) for large k and to G(5) < 17, G(6) <
24, ((7) <33, G(8) <42, G(9) <51. Wooley (1993b, Theorem 2.1) has recently
obtained (5.8) with A, = 2s—k+ ke'"2*/¥ and this leads to the refined upper bound

log log k&

<
G(k) < k(log k+log log k+2+log 2+ log k

(140(1)).
Also, the recent work by Wooley on Vinogradov’s mean value theorem (19925,
1993b) is motivated in spirit, at least, by the ideas described here.

6. Exponential sums

We may view (5.8) as giving a bound for the 2sth mean of the exponential sum

glaoy= X e(axk). (6.1)
west (P, R)

In applications it is often essential to have estimates for the individual sum also.
When a is close to a rational number with a relatively small denominator there may
well be a technical requirement for an asymptotic formula for g(«), see Lemma 5.4
of Vaughan (1989a). Such results are usually poor compared with the case when the
sum is over all z in an interval, in spite of various estimates (Vaughan & Wooley
1991, Lemmas 7.2 and 8.5) which have the effect in essence of extending the range
of validity of the asymptotic formula. Thus normally this would not be the reason

for the introduction of numbers without large prime factors to a problem.
When «a is close to a rational number with a relatively large denominator, however,
the situation is reversed. For large k the best general bound for the complete sum

fla) =2 e(aa’) (6.2)

is that of Corollary 1.1 of Wooley (1992b) which, in particular, tells us that when
lge—a| < PY*, (a,q) = 1,P < q¢ < P¥! we have

f(d) < Pl—o’+e,

where 1/0 ~ 2k? log k. On the other hand the methods of Vaughan (1989a, §10) and
Wooley (1992a) in the same circumstances give

glo) < P,
where 1/p ~ 2k log k. Again an important ingredient is that the bulk of the elements
Phil. Trans. R. Soc. Lond. A (1993)
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of &/(P,R) have convenient factoring properties. In this instance the following
lemma, Lemma 10.1 of Vaughan (1989a), is most useful.

Lemma 5. Suppose that 2 < R < M <y < P and ye A (P,R). Then there is a unigque
triple (p,u,v) with

(i) y=uw,
(i) uwed(Q/v,p),

(iii) M < v < Mp,

(iv) plo,

(v) plv=p<p <R

This lemma enables us to write g(a) as a combination of bilinear forms which then
may be bounded via the large sieve and the mean value estimates (5.8).
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